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Abstract

2,3-Diketopiperazine (2,3-piperazinedione), C4H6N2O2,
crystallizes in the monoclinic space group P21/c with a =
5.941 (3), b = 10.080 (3), c = 8.282 (2) AÊ , �= 95.87 (3)�, V
= 493.4 (5) AÊ 3, Z = 4, Dx = 1.536 Mg mÿ3 and Mr = 114.1.
The six-membered ring adopts a skew-boat conforma-
tion with Q = 0.467 (3) AÊ , � = 64.6 (3)� and ' =
269.8 (4)�. The C2 symmetry, which typi®es the free
molecule, is broken by the formation of two inter-
molecular NÐH� � �O bonds involving only one of the
C O groups of the 2,3-diketopiperazine molecule. The
intensity data typical for a time series are summarized in
traditional statistics by B = �2(B) = �Bi and R = �2(R) =
�Ri, where B is the background and R the raw intensity.
Exploitation of the same data using Bayesian metho-
dology leads to similar values for B and R, but the
variances for these signals are signi®cantly smaller. This
reduction in variance is dictated by the length N of the
time series. With 25 observations in each hkl time series
we arrive at variances that are 25% of their classical
values. So, a measuring strategy in which a single
observation with a slow scan at speed 1/N is preferred
above a series of N observations at speed 1 produces the
worst possible bene®t within a ®xed time frame. In
complete contrast to our expectation, structure re®ne-
ments reveal that that the standard deviation of an
observation of unit weight, S, will converge towards its
ideal unit value only when we decrease the accuracy of
the data set. This unpleasant behaviour points to a
serious discrepancy between accuracy and precision.
Our re¯ection intensities are systematically wrong,
because we underestimate the wavelength dispersion.
On our CAD-4 equipment a sealed Mo tube and the
standard graphite monochromator produce an incident
beam with ��/� = 14%. As a consequence, the observed
background intensities are not representative of the real
background. The size of the background error depends
on the nearby Bragg intensity. The magnitude of the
signal pollution contaminating the local background is

�2% of the maximum Bragg intensity found at � =
0.71 AÊ .

1. Introduction

2,3-Diketopiperazine is a cyclic oxamide, in which the
oxamide unit is forced to adopt a cis con®guration owing
to the constraints of the ring system. This renders 2,3-
diketopiperazine a useful model compound in the study
of the cis secondary amide group (Lenstra et al., 1998).

Its solid-state structure is analyzed in x2 on the basis
of X-ray diffraction. The small size of the structure
makes it very attractive to explore variations in the
measuring strategy. These variations were designed to
improve the accuracy of Bragg intensities.

In two previous papers (Lenstra, Geise & Vanhou-
teghem 1991; Lenstra, Verbruggen et al., 1991) we have
reported on the possibilities of data improvement via a
structured background analysis. Theoretically the
background is a simple function of the Bragg angle �.
This allowed us to summarize all the observed back-
grounds over a certain � interval in a local background
distribution P(B). The observed raw intensity R contains
the net intensity I and the local background B. Since I
and B are unrelated, we have P(R) = P(I)P(B) with
�2(R) = �2(I) + �2(B). Combining the measurement R,
which characterizes P(R), with the local background
distribution P(B) we arrive at a net intensity via P(I) =
P(R)/P(B), which results in �2(I) ' I. Therefore, a
background model reduces the background to a `non-
event' in error analysis. In this way small intensities gain
a magnitude in accuracy.

To decrease the error margins typical for larger
intensities (R' I) we need to follow a different strategy.
For clarity we con®ne ourselves to a ®xed time
measurement. Our current working practice favors a
single slow scan. The alternative strategy is to spend the
same time creating a time series of equivalent
measurements, all observed at the maximum scan speed
of the diffractometer. Traditional statistics point to an
equivalence between these two strategies. However, as
shown in x3, this equivalence breaks down in a Bayesian
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perspective, which leads to signi®cantly smaller error
margins.

In x4 we see that a systematic increase in the accuracy
of the data set {I}H has only a marginal effect on R
values. More disturbing is the behavior of S. It increases
with increased data accuracy. Rather than converging to
its `ideal' unit value, S, which is de®ned as h��I2/�2(I)i,
deviates more and more from unity. Consequently, the
least-squares errors {�I}H cease to re¯ect the random
errors {�(I)}H which are representative of the experi-
ment performed.

This unexpected response of S to signi®cant reduc-
tions in {�(I)}H is discussed in x5. The data set {Iobs}H is
shown to be accurate, but imprecise. The net intensities
systematically underestimate the true intensity, because
the incident X-ray beam is not really monochromatic. It
is characterized by a wavelength dispersion of 14%. This
value is typical for an incident beam produced by a
sealed Mo tube combined with a standard pyrolytic
graphite monochromator (mosaicity 0.4� full width at
half height of the rocking curve). As a result of this large
wavelength dispersion, the observed backgrounds are
seriously polluted by a rest signal with size roughly equal
to 2% of the nearby Bragg intensity observed at the �
position which coincides with �(Mo K�). The size of the
error depends on � and other factors. Therefore, errors
induced by the wavelength dispersion in¯uence both the
scale factor and the displacement parameters. Since
Inet/Itrue decreases with �, the lack of precision in {Inet}H

leads to a systematic error, which causes the apparent
displacement parameter B(X-ray) to overestimate the
true atomic displacements.

It is well established that X-ray diffraction experi-
ments produce larger displacement parameters than
neutron diffraction (Craven & McMullan, 1979; Klebe et
al., 1984; Coppens et al., 1984, oxalic acid project; Fuess,
1990). A valid explanation for this systematic discre-
pancy is still missing. We feel that the 14% wavelength
dispersion, which affects X-ray data collection and
which is subsequently ignored in the data analysis, is
mainly responsible.

2. X-ray determination

A crystal of 0.20 � 0.25 � 0.15 mm was mounted on an
Enraf±Nonius CAD-4 diffractometer. Cell dimensions
were inferred from the angular setting of 25 re¯ections
with 4 < � < 16� using graphite monochromated Mo
radiation (� = 0.71073 AÊ ). 1015 re¯ections (0 < h < 7; 0 <
k < 12;ÿ9 < l < 9) were measured up to a Bragg angle of
25� in an !/2� scan mode. Three intensity control
re¯ections were measured every 2 h. Their signals
showed no signi®cant intensity variations. No absorption
correction (� = 0.12 mmÿ1) was applied. Systematic
extinctions pointed at the space group P21/c. The
structure was solved with MULTAN (Germain et al.,
1971). All H atoms were located in a difference electron

density map. Full experimental details are given in
Table 1.

In the least-squares optimization (on |F|) of the
structure model we used 457 intensities (I > 3�) with
weights based on counting statistics. Residuals
converged at R = 0.034 and wR = 0.037. The maximum
value for |��| in the ®nal difference Fourier was
0.25 e AÊ ÿ3. The maximum shift/error was 0.05. Final
parameter values for x, y, z and Beq are shown in Table 2.
The atomic numbering scheme is illustrated in Fig. 1.

Table 1. Experimental details

Crystal data
Chemical formula C4H6N2O2

Chemical formula weight 114.1
Cell setting Monoclinic
Space group P21=c
a (AÊ ) 5.941 (3)
b (AÊ ) 10.080 (3)
c (AÊ ) 8.282 (2)
� ��� 95.87 (3)
V (AÊ 3) 493.4 (5)
Z 4
Dx (Mg mÿ3) 1.536
Radiation type Mo K�
Wavelength (AÊ ) 0.71073
No. of re¯ections for cell parameters 25
� range (�) 4±16
� (mmÿ1) 0.12
Temperature (K) 293
Crystal form Prism
Crystal size (mm) 0.25 � 0.20 � 0.15
Crystal color Colorless

Data collection
Diffractometer Nonius CAD-4
Data collection method !/2� scans
Absorption correction None
No. of measured re¯ections 1015
No. of independent re¯ections 1015
No. of observed re¯ections 457
Criterion for observed re¯ections I > 3�(I)
Rint 0.03
�max ��� 25
Range of h; k; l 0 ! h! 7

0 ! k! 12
ÿ9 ! l! 9

No. of standard re¯ections 3
Frequency of standard re¯ections 120 min
Intensity decay (%) 0

Re®nement
Re®nement on F
R 0.034
wR 0.037
No. of re¯ections used in re®nement 457
No. of parameters used 97
H-atom treatment All H-atom parameters

re®ned
Weighting scheme Counting statistics
��=��max 0.05
j��jmax (e AÊ ÿ3) 0.25
Extinction correction None
Source of atomic scattering factors International Tables for

X-ray Crystallography
(1974, Vol. IV)
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Bond distances, valence angles and torsion angles are
listed in Table 3. The six-membered ring contains two
planar moieties, viz. C3ÐN4ÐC5ÐO1 and C2ÐN1Ð
C6ÐO2, with a dihedral angle of 17� between them. The
ring itself has a skew-boat conformation [ideal Cremer
& Pople (1975) coordinates: � = 67.5, ' = 270�]. The
bond length C5ÐC6 is very long [1.532 (4) AÊ ] for a
Csp2ÐCsp2 distance, but is in keeping with the values in
transoxamides such as oxamide (de Wit & Harkema,
1977) and oxalyldihydrazide (Bracke et al., 1988;
Quaeyhagens et al., 1990). In our opinion this length
indicates that the conjugation between the two �
systems within the molecule is either absent or very
weak.

The two intermolecular NÐH� � �O bonds (Table 3)
introduce an asymmetry in the 2,3-diketopiperazine
molecule. Within a peptide moiety the C O bond
length increases by 0.011 AÊ for each hydrogen bond in
which the O atom acts as an acceptor (Popelier et al.,
1991). Here the expected difference of 0.022 AÊ between
C5ÐO1 and C6ÐO2 is matched by an experimental one
of 0.016 (6) AÊ . This bond-length variation is compatible
with that observed in acetamide. Here the C O bond
length is 1.220 (3) AÊ in the gas phase (Kitano &

Kuchitsu, 1973), i.e. in the absence of hydrogen bonds,
but in its R3c solid-state structure (Jeffrey et al., 1980)
with two hydrogen bonds per oxygen the C O length is
1.250 (1) AÊ . 2,3-Diketopiperazine shows the same
discrepancy within a single molecule in the solid state.

The same interactions are visible in the displacement
parameters obtained from our X-ray model for O1 and
O2. Since Beq(C6) and Beq(C5) are almost identical, the
difference in �U of 0.010 (1) AÊ 2 in the mean-square
displacements of O1 and O2 does not re¯ect an intra-
molecular phenomenon. It reveals a local anomaly
induced by the N1ÐH� � �O1 and N4ÐH� � �O1 inter-
actions restricting the mobility of O1. The hydrogen
bonds have elongated C5 O1 and thus the force
constant of the C O stretching is lowered by a loss in
bond strength. The intramolecular mobility of O1 is thus
increased by the same elements that have restricted its
overall mobility in the crystal lattice.

3. The bene®t of a time series in data collection

Let us compare the results of two different schemes.
First we observe a diffracted intensity in a single scan
with a scan speed of 1/N. The observed integrated
intensity is R counts with a counting statistical variance
equal to R.

In the second analysis we measure the same re¯ection
N times with a scan speed equal to 1. Each of these
measurements results in integrated intensities Ci with a
variance of Ci. In both experiments the total exposure
time used to determine the intensity is identical.
Therefore, both options lead to a similar result, i.e. R '
�Ci and �2(R) ' ��2(Ci). In practical work the slow

Table 3. Selected geometric parameters (AÊ , �)

C5ÐO1 1.230 (4) C3ÐN4 1.458 (4)
C6ÐO2 1.215 (4) N1ÐHN1 0.87 (4)
C6ÐN1 1.338 (4) N4ÐHN4 0.90 (4)
C5ÐN4 1.322 (4) C2ÐH21 1.02 (3)
C5ÐC6 1.532 (4) C2ÐH22 0.97 (3)
C2ÐC3 1.490 (4) C3ÐH31 0.98 (3)
C2ÐN1 1.451 (4) C3ÐH32 0.98 (3)

O1ÐC5ÐC6 119.2 (2) N1ÐC6ÐC5 116.0 (2)
O1ÐC5ÐN4 123.5 (2) N4ÐC5ÐC6 117.3 (3)
O2ÐC6ÐC5 119.1 (2) C2ÐN1ÐC6 122.8 (3)
O2ÐC6ÐN1 124.9 (3) C3ÐN4ÐC5 122.9 (3)

O1ÐC5ÐC6ÐO2 ÿ15.4 (4) C3ÐN4ÐC5ÐC6 ÿ3.3 (4)
C3ÐN4ÐC5ÐO1 175.6 (2) C5ÐC6ÐN1ÐC2 ÿ3.8 (4)
C2ÐN1ÐC6ÐO2 177.1 (3) C6ÐN1ÐC2ÐC3 38.6 (4)
O1ÐC5ÐC6ÐN1 165.4 (2) N1ÐC2ÐC3ÐN4 ÿ52.6 (3)
O2ÐC6ÐC5ÐN4 163.5 (2) C2ÐC3ÐN4ÐC5 37.9 (4)
N4ÐC5ÐC6ÐN1 ÿ15.6 (3)

DÐH� � �A DÐH H� � �A DÐA DÐH� � �A
N1ÐHN1� � �O1i 0.87 (3) 2.08 (3) 2.951 177 (3)
N4ÐHN4� � �O1ii 0.90 (3) 2.01 (3) 2.906 174 (3)

Symmetry codes: (i) ÿx, ÿy, ÿz; (ii) 1 ÿ x, 1
2 + y, 1

2 ÿ z.

Table 2. Fractional atomic coordinates and equivalent
isotropic displacement parameters (AÊ 2)

Beq � �4=3��a2�11 � b2�22 � c2�33 � �2ab cos ��12 � �2ac cos���13

��2bc cos���23�:
x y z Beq

O1 0.2785 (3) 0.0027 (2) 0.1096 (3) 3.28 (4)
O2 0.5621 (3) 0.1568 (2) 0.3128 (3) 4.08 (5)
N1 0.3552 (3) 0.3374 (2) 0.2296 (3) 2.89 (5)
C2 0.1642 (4) 0.3934 (3) 0.1291 (4) 2.98 (6)
C3 ÿ0.0360 (5) 0.3046 (3) 0.1308 (4) 2.81 (6)
N4 0.0279 (3) 0.1705 (2) 0.0880 (3) 2.56 (5)
C5 0.2273 (4) 0.1182 (3) 0.1369 (3) 2.29 (5)
C6 0.3997 (4) 0.2073 (3) 0.2352 (2) 2.49 (6)
HN1 0.459 (4) 0.389 (3) 0.278 (3) 1.3 (6)²
HN4 ÿ0.075 (4) 0.117 (3) 0.032 (3) 1.7 (6)²
H21 0.127 (4) 0.483 (3) 0.175 (3) 1.5 (6)²
H31 ÿ0.155 (4) 0.333 (2) 0.048 (3) 0.2 (5)²
H22 0.203 (4) 0.407 (3) 0.019 (3) 1.0 (6)²
H32 ÿ0.093 (4) 0.300 (3) 0.237 (3) 1.1 (6)²

² These atoms were re®ned isotropically.

Fig. 1. 2,3-Diketopiperazine and its atomic numbering scheme.
Ellipsoids at 50% probability are shown. The two hydrogen bonds
accepted by each molecule are indicated.
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measurement is favored above a repeated measurement,
because it requires only one single positioning command
for the diffractometer setting.

The slow measurement produces a single observation
of R counts. This value is indicative of the true intensity
r. It is r we are really interested in. R and r are related
via

P�rjR� � P�Rjr�P�r�: �1�
The likelihood P(R|r) is a counting statistical distribu-
tion is given by exp[ÿ(R ÿ r)2/2r].

Let us now construct the prior P(r). It follows from
probability theory that there is 99.7% probability that R
is unacceptable if |(rÿ R)| > 3�(r). Therefore, any r used
to describe the true signal, which results in |r ÿ R| >
3�(r), has to be regarded as an unsatisfactory proposi-
tion. The acceptable r values are thus situated between

rmin � Rÿ 3��rmin�
and rmax � R� 3��rmax�:

In a counting statistical framework we have �2(rmin) =
rmin and �2(rmax) = rmax.

Given the observation R we obtain P(r) = 0 for any r <
rmin and r > rmax. To express our ignorance related to the
true value of r, P(r) is a uniform distribution in the
intensity interval between rmin and rmax.

Substitution of P(R|r) and P(r) in (1) yields

hrjRi ' R and �2�rjR� ' R:

In the absence of an `informative prior' the real
measurement dictates the ®nal result.

Let us now re-examine the results Ci in the time series.
One advantage of a series of N observations is obvious.
Outliers, caused by multiple scattering or diffractometer
instabilities, are easily detected and removed from our
data set. This suf®ces to illustrate that the end result in
this reconstruction of the underlying signal is more
robust in spite of the fact that the ®nal result appears to
be identical to the slow measurement.

To estimate the added value is not very complicated.
Suppose that our time series is not contaminated by an
outlier. The two extreme values in our Ci series are Cmax

and Cmin. The ideal value of the signal is c. Cmax

constrains this ideal signal c to values between Cmax ÿ
3�(cmin) and Cmax + 3�(cmax). Cmin also limits the
acceptable c values to values between Cmin ÿ 3�(c0min)
and Cmin + 3�(c0max). Therefore, the two extreme Ci

observations limit the range of acceptable c values
between Cmin + 3�(c0max) and Cmax ÿ 3�(cmin). This is
illustrated in Fig. 2, which also shows the prior distri-
bution P(c).

In a time series of 30 elements the average difference
between Cmax and Cmin is �4 e.s.d.'s. Consequently, the
function interval, in which P(c) 6� 0, has a width of
2hCi1/2. This distribution width is small compared with

the value of 6hCi1/2 connected to the counting statistical
distribution P(Ci|c). So P(c) is an informative prior.

Substitution of P(Ci|c) and P(c) in (1) produces the
posterior distribution P(c|Ci), which enables us to
enumerate hc|Cii and �2(c|Ci). A direct summation over
all i posterior moments then reproduces the signal with a
value �R and its variance �2. In the single measurement
strategy �2 ' R; in our time series strategy we obtain a
much smaller value, viz. �2 ' R/10.

The global estimate of the resulting variance is easily
obtained. The prior P(c) is nonzero in a 2� (counting
statistics) interval. To simplify the algebraic expression
we approximate P(c) via a normal distribution. Then,
6�(prior) ' 2�(counting statistics) and thus �2(prior) =
�2(counting statistics)/10. Since P(c) is more informative
than the counting distribution P(Ci|c), the posterior
moments to be obtained from (1) are

hcjCii ' hCi and �2hcjCii ' �2�prior� � C=10:

We decided to use 2,3-diketopiperazine for a
comparison between the traditional statistical approach
and alternative logic, in which the Bayesian rules allow
one to take full advantage of the sociological composi-
tion of the available time series.

4. Re®nement and data accuracy

Every re¯ection up to � = 25� was measured 25 times at
slightly different azimuth angles (0 �  � 24� in steps of
1�) using the maximum diffractometer speed in each
individual scan. In view of the crystal size (0.20� 0.25�
0.15 mm) and the low value for � (0.12 mmÿ1), the
changes in azimuth angle do not introduce a signi®cant
variation in intensities caused by absorption.

We checked the internal consistency of our intensity
measurements. For this purpose we created ®ve data
sets, in which the original 25 measurements per re¯ec-
tion were combined over  intervals of 5�. Mixing these
®ve independent data sets of 1015 re¯ections each we
calculated a merging R of 0.03.

We started our analysis with the classical recipe of
summing equivalent data. �2 was used to detect possible
outliers in each time series of background and raw
intensity. If present, that observation was omitted from
the data summation. Net intensities were calculated
following the classical background±peak±background
procedure.

Fig. 2. The construction of an informative prior from Cmin and Cmax,
which are the two extremes in a time series of identical
measurements.
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We constructed different data sets for 2,3-diketo-
piperazine by combining n elements per re¯ection H
from the time series of 25 individual observations. The
structure of 2,3-diketopiperazine was subsequently
optimized using that particular data set. The least-
squares results are summarized in Table 4 for the data
sets with n = 1, 2, 4, 9, 16 and 25. Final parameter values
in each analysis did not deviate more than 3 e.s.d.'s from
the values presented in Table 2.

Combining n individual measurements into a single
result increases the accuracy of the latter. Its standard
error follows nÿ1/2. This explains the increase in Nobs, the
number of observations with I > 3�(I), as a function of n.
R values, weighted or unweighted, do not follow the
pattern of the improved accuracy per data set on offer.
Increasing the data accuracy by a factor of ®ve causes R
to shift marginally from 0.053 to 0.047. Most disturbing,
however, is the behavior of S = �2/Nobs =
�[�I/�(I)]2/Nobs. S compares the randomized least-
squares errors {�I}H with the random errors {�(I)}H

typical for our experiment. The fact that as S deviates
more from its ideal unit value the more accurate the data
set becomes tells us that �I(least-squares) is out of step
with �(I)(experiment). To be certain we double-checked
this surprising S trend. In this experiment we used the
more rigid structure of lithium hydrogen maleate di-
hydrate (Popelier et al., 1989) as a reference compound.
The results (see Table 4) are practically identical to
those obtained for 2,3-diketopiperazine.

A Bayesian treatment of the diffractometer data
yields posterior standard deviations �0, which are
smaller than the counting statistical values �. We now
obtained 647 re¯ections with I > 3�0(I). Structure opti-
mization converged at R = 0.061 and wR = 0.075.² Again
the shifts in model parameters were insigni®cant
(maximum shift/error = 2.5). The maximum noise
level in the ®nal difference electron density was
ÿ0.3 e AÊ ÿ3.

�0 < � and I0 ' I summarizes concisely the
consequences of the two strategies; this explains the
15% increase of data exploited in the least-squares
analysis. These extra re¯ections are in fact the bulk of
the intensities between 1.5� and 3� in the traditional
data set. This indicates that 3�0 ' 1.5� and thus the
Bayesian logic leads to posterior values for the variance
which are 25% of the traditional counting statistical
value.

This overall reduction in variance matches nicely with
our crude, but optimistic, estimate of �2(posterior)' 0.1
� �2(counting statistics); see x3.

In our opinion this study demonstrates clearly the
potential gain in accuracy which is attainable within the
framework of ®xed time measurements. All we have to
do is replace a slow scan by a series of N measurements
at high speed. The greater the N value, the higher the
®nal accuracy because N determines the average
distance between Cmin and Cmax.

An increase in experimental accuracy should, at least
in principle, lead to a decrease in the e.s.d.'s on the
re®ned model parameters. We expect a reduction in
�(model), because (a) �(model) is proportional to
�(observation) and (b) �(model) is inversely propor-
tional to N

1=2
obs, where Nobs is the number of observations

included in the least-squares analysis.
In our model optimizations, �(model) is only in

keeping with (Nobs)
ÿ1/2. Therefore, �(model) behaves as

if it were independent from the (signi®cant) variations
on offer in �(observation). The absence of a detectable
correlation between �(model) and �(observation) is
logical, when the real quality of Iobs is dictated by a
systematic error exceeding the random error char-
acterizing the experiment.

If true, this is a painful conclusion. It would seriously
undermine e.g. maximum entropy methods as a tool to
produce an improved set of �'s via ¯at difference
Fourier maps.

The absence of a signi®cant correlation between
�I(least-squares) and �(I)(experiment) is underlined by
the trend in S values (see Table 4). Rather than
converging to its ideal unit value with increasing accu-
racy in the data set, we observe exactly the reverse. This

Table 4. Least-squares and Fourier evidence (��max, e AÊ ÿ3) as a function of the accuracy characteristic for the data set

Here accuracy depends on the length n of a time series of equivalent measurements available for hkl. The number of re®ned parameters was 97 in
all calculations.

2,3-Diketopiperazine Lithium hydrogen maleate dihydrate
n R wR Nobs S ��max R wR Nobs S ��max

1 0.053 0.058 279 1.416 0.34 0.035 0.047 1368 1.543 0.37
2 0.049 0.054 335 1.406 0.34 0.034 0.046 1462 1.644 0.38
4 0.047 0.055 400 1.502 0.27 0.033 0.047 1555 1.761 0.40
9 0.042 0.056 466 1.667 0.26 0.032 0.048 1636 1.901 0.43
16 0.042 0.059 521 1.849 0.28 0.032 0.052 1702 2.140 0.45
25 0.047 0.054 553 1.942 0.25 0.033 0.056 1769 2.356 0.46
Bayes 0.062 0.075 647 2.745 0.34

² The selective addition of small intensities to the data used in the
least-squares optimization hardly in¯uences �|Fo|. �|�|, however,
increases in line with the number of contributors. This is re¯ected in
the variation of the observed R values.
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also suggests that the precision of Iobs is quite different
from its accuracy.

5. Precision versus accuracy

The quality of a structure analysis depends on the ef®-
ciency of the selected model parameters and/or on the
reliability of the initial data. It is clear from Table 4 that
the R values do not follow the accuracy pattern char-
acteristic for the data set at hand. Therefore, the model
parameters r and � might be too crude to exploit this
accuracy. This inef®ciency is, in our view, connected to
our least-squares approach, in which �(atom) is spheri-
cally symmetric and in which an harmonic potential
governs the atomic displacements. These limitations of
the model can be tackled e.g. by a multipole re®nement,
which is known to lead to a signi®cant decrease in R
values. Therefore, we feel that model shortcomings
cannot be ruled out as a potential source of confusion.

The observed behavior of S poses a serious challenge.
The discrepancy between the least-squares errors {�I}H

and the experimental errors {�(I)}H grows with
increased accuracy of {Iobs}H. This unpleasant trend
points to a lack of precision in {Iobs} generated by a
systematic error. Randomization of this error in a least-
squares calculation is then responsible for the observed
pattern in S values. We believe we have identi®ed the
systematic error which reduces the quality of {Iobs}H,
namely a serious misjudgement of the wavelength
dispersion characteristic for the incident X-ray beam.

To analyze the wavelength distribution typical for the
incident beam we installed an Si crystal (0.5 � 0.5 �
0.5 mm) on our diffractometer. The incident beam was
produced by an Mo tube in combination with a graphite
monochromator [net plane (002); mosaicity 0.4� full
width at half height in the rocking curve]. The mosaicity
of the Si crystal was extremely small (0.005�), which
helped to minimize wavelength smearing in its re¯ection

pro®le. The Si(12 0 0) re¯ection with � = 51.8� was used
in our wavelength-dispersive analysis. Scans were made
using the !/2� scan mode over an angular range in ! (or
�) of 21�. The observed pro®les were dumped in 96
channels.

In our ®rst series of measurements we used our CAD-
4 diffractometer. The incident X-ray beam was produced
by a sealed Mo tube (focal spot 0.4 � 8.0 mm; take-off
angle �6�) installed upon our FR-586 generator with a
setting of 20 mA and 50 kV. The results are depicted in
Fig. 3. Using 187 individual pro®le dumps we calculated
the average signal �i and its spread s2

i per channel i. At
the re¯ection maximum, s2 is signi®cantly larger than �.
This deviation from counting statistics is indicative of
positional and electrical uncertainties. Positional errors
were estimated by calculating the spread for the center
of gravity in the 189 individual pro®les. The s.u. on the
gravity center was found to be 0.09 channel or 0.02� in !.
The electrical stability was estimated by comparing the
integrated intensities per pro®le scan. Assuming
s2(observed) = �2(counting statistics) + (pI)2, we
inferred an electrical error p of 0.01. As can be seen in
Fig. 3, the Si(12 0 0) re¯ection begins at � = 0.68 AÊ and
ends at � = 0.79 AÊ . Therefore, the wavelength dispersion
��/� typical for the incident beam is 0.14.

We repeated this experiment on our recently
purchased Mach-3 diffractometer installed on a rotating
Mo anode (focal spot 0.3� 3 mm) coupled to an FR-591
generator. On this combination the random error on the
center of gravity was 0.02 channel (0.004�), whereas the
electrical error decreased to p = 0.004. Both errors are
practically independent of the tube current, which we
varied from 10 to 50 mA. The results of the Si(12 0 0)
measurements are shown in Fig. 4. Counting statistical
errors hold everywhere, except in the pro®le maximum.
Here s2/� increases with increasing tube current and
thus with increasing X-ray intensity. The increase in s2/�

Fig. 3. The averaged Si(12 0 0) pro®le (thick curve) and its
reproducibility represented by s2/�. Minimum and maximum
wavelengths in the Si(12 0 0) pro®le are 0.68 and 0.79 AÊ .

Fig. 4. The averaged Si(12 0 0) pro®le (thick curve) from the same Si
specimen as in Fig. 3 observed on a rotating anode device operated
50 kV, 20 mA. A, B and C represent s2/� for measurements at tube
currents of 10, 20 and 50 mA, respectively. For clarity their unit
value base line is shifted to 2.0 for B and 3.0 for A. Observed
(12 0 0) wavelength limits are 0.69 and 0.75 AÊ .
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at the re¯ection maximum is in keeping with an elec-
trical error ®xed at 0.4%. In this experiment we ®nd a
re¯ection starting at � = 0.69 AÊ and fading at �' 0.75 AÊ .
Therefore, this time we have a wavelength dispersion of
0.09.

The pro®le scans with CAD-4 and Mach-3 equipment
are both reproducible. The results are, however, quite
different. This is indicated in Fig. 5 via the ratio between
the two measurements. This ratio is far from constant. A
detailed analysis of the wavelength dispersion will be
presented in a forthcoming paper. Here it suf®ces to link
the difference in ��/� between the stationary and
rotating anode devices to the main difference in X-ray
optics, which is the separation between the graphite
monochromator and the silicon analyzer. This distance
is 136 mm for the sealed tube/CAD-4 combination and it
increases to 230 mm on the rotating anode/Mach-3
apparatus. In Fig. 6 we give a simpli®ed model linking
crystal size and monochromator±crystal separation to a
�� variation. From Bragg's law �� is easily translated in
��. Since �� is small, we have tan �� ' ��. A
reduction in �� by 40% through a selective increase in
the monochromator±crystal distance then leads to the
observed shift in ��/� from 0.14 to 0.09.

The general expression for the scan angle to be used
in data collection is given by c = 1.5(a + btan �). For the
2,3-diketopiperazine measurement on our sealed tube/
CAD-4 equipment we used a = 1.2 and b = 0.7�. Theo-
retically b is dictated by the wavelength dispersion via b

= (��/�)(360/2�). Therefore, the correct value for b,
given ��/� = 0.14, ought to be 8�.

However, a data collection with c = 1.5(a + 8tan �) is
impossible, because very soon c becomes larger than the
� separation between adjacent lattice points. This
prohibits the intensity measurement of individual
re¯ections. Forcing a measurement, as we did, with b =
0.7� turns the background into a very poor estimator of
the real background. For example, the high � back-
ground is seriously polluted by a rest signal from the �
tail of the preceeding re¯ection. This error is roughly
2% of the maximum intensity at � = 0.71 AÊ . Conse-
quently, the background±peak±background recon-
structed intensity Inet systematically underestimates the
true intensity Itrue. Let us now introduce �, de®ned as �
� Inet/Itrue. Then � decreases with increasing �. When
we move from low-order intensities towards higher-
order data the background is sampled closer (in � and
thus in �) to the central re¯ection maximum at � =
0.71 AÊ . This increases the signal contribution, which is
superimposed on the real background, at the observa-
tion point. As can be seen in Table 4, S from lithium
hydrogen maleate is always larger than S from 2,3-
diketopiperazine. This systematic difference is, in our
opinion, the logical consequence of the data collection
parameter b. In 2,3-diketopiperazine we used b = 0.7�,
whereas in the lithium compound we used b = 0.6�.

The only model parameter able to absorb � is the
temperature factor. Since Inet decreases faster with �
than Itrue, �(X-ray) overestimates the real atomic
displacements. In elastic neutron scattering the distance
between monochromator and crystal is roughly a
magnitude larger than in our X-ray environment.
Improving �� by a magnitude leads to an estimated
wavelength dispersion of 0.02. In that framework the
background observations are practically free of the
intensity bias produced by the nearby signal (s) and thus
B(neutron) is a much better estimator for the atomic
displacements in the crystal than B(X-ray).
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